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Introduction 
 
 

 Conventional mammography is limited in its sensitivity for detecting subtle tissue’s 
pathological changes, since the imaging relies on the small differences in x-ray attenuation 
between the lesions and breast tissues of variable structure.  As x-ray traverses a breast, not 
only does its intensity get attenuated, but its phase also gets shifted.  The amount of x-ray 
phase shift is proportional to x-ray wavelength and the ray integral of breast electron densities. 
Hence the phase sensitive x-ray imaging has potential for greatly increasing x-ray imaging 
sensitivity and specificity and reducing radiation doses associated with the imaging.  

 The approaches for phase-sensitive x-ray imaging fall into three broad categories: the 
crystal analyzer-based imaging, the phase-gratings based interferometric imaging, and the 
inline phase-sensitive imaging.  Among the three methods the inline phase-sensitive imaging 
can be implemented without any x-ray optics such as the costly crystal monochromators and 
crystal analyzers or the hard-to-fabricate expensive diffractive gratings, hence it is especially 
suitable for clinical imaging implementation. The setting for inline phase-sensitive imaging is 
very much similar to conventional x-ray imaging, provided spatially coherent x-ray illumination 
and large subject-detector distance are implemented. The phase-contrast manifests as the 
interference fringes formed by the phase-shifted x-rays undergoing the Fresnel diffraction.   
  The long term objective of the project is to develop a low-dose and quantitative phase x-
ray imaging technique for facilitating breast cancer detection.  The Specific Aims of the project 
of the three-year period are:  (1) Develop prototype phase-imaging system enabling the phase 
retrieval, that is, the  reconstruction of objects phase-maps.  The system hardware comprises a 
micro-focus tube operating at high tube voltages, a high resolution photostimulable phosphor 
plate (CR-plate) based detector system.  The core algorithms for breast phase-map 
reconstruction will be developed to retrieve a breast phase map from a single recorded image.  
(2) Validate the accuracy of the reconstructed tissue projected electron densities; validate the 
many-fold radiation dose reduction achieved with the proposed system; conduct subjective 
measurements to characterize the performance of the proposed system. 
 
 
Body 
 
 
 In the second year of this project, as planned in the Statement of Work, we performed 
two tasks: (A). Continue to develop the robust phase retrieval algorithms for future phase 
imaging. It is imperative to limit radiation doses involved in any clinical imaging applications. 
Hence it is important to develop robust phase retrieval approaches against the noise, and 
thereby to enable radiation dose reduction in phase imaging.  In order to develop our new phase 
retrieval method to its full potential, our efforts in the Year 2 were focused on refining the 
attenuation-partition based iterative phase retrieval method and performing quantitative and 
systematic evaluation of its robustness and efficiency compared to the two most widely used 
phase retrieval algorithms in the literature. (B).Complete the system hardware integration for 
future phase imaging with breast phantoms. 
 
 
(A). Refinement and performance evaluation of the attenuation-partition based iterative 
phase retrieval method  
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 Introduction: When x-ray 
traverses an object x-ray undergoes 
phase-shift as well. The differences 
in x-ray phase shifts between 
different tissues are about one 
thousand times greater than the 
difference in attenuation. A tissue 
phase map ( )rϕ   is a map of the ray 

integrals ( )( ) 2 ( , )r r s dsϕ π λ δ= − ∫
  , 

where ( , )r sδ  denotes the tissue 
refractive index decrement.  In 
phase contrast imaging, an 
important task is to retrieve tissue 
phase maps.  Phase retrieval has 
potential for improving tissue 

contrast and achieving quantitative tissue characterization.  Moreover, phase retrieval is 
required for phase sensitive tomography and tomosynthesis for removing artifacts associated x-
ray refraction and diffraction.  
 The mostly used phase retrieval method is based on the Transport Intensity of Equation 
(TIE).  According to the TIE-based method, one acquires two images: one contact radiograph, 
and one phase contrast image. The phase map ( )rϕ   is retrieved by using the equation 

( ) ( ) ( )( ){ }2 2 2 2 2
22 in o or M R M I I A Aϕ π λ − − = − ∇ ∇ ⋅ ∇ ∇ −  

 [Allen et al. 2001].  The inverse 

Laplacian operator 2−∇ contains a singularity at the zero-frequency in the Fourier domain, we 
believe that it actually amplifies the noise in images and may fail the phase retrieval.   Fig. 1 
shows a contact radiograph and a phase contrast image of a nylon air-bubble wrap acquired at 
40 kVp from our previous experiment. We then used the two images in Fig. 1 for the phase 
retrieval.   Fig. 2-(left) is the retrieved phase map with the TIE-method [Yan et al. 2008].  
Apparently the retrieval failed because of relatively high noise levels in the "low dose" 
projections.  Fig. 2-(middle) is the retrieved phase map with the TIE-method and the Tikhonov 
regularization [Tikhonov et al. 1977]. The Tikhonov regularization is commonly used 
regularization method in phase retrievals.  It essentially consists of replacing the inverse 

Fig.1. Nylon air bubble Images acquired at 40 kVp, SID = 
1.75 m. (left) Conventional radiograph. (right) Phase–
contrast image, M = 2.8. 

Fig. 2. Retrieved phase maps of the Nylon air bubble wrap from the acquired images in Fig. 
1.  (left) Erroneous phase map retrieved with the TIE method. (middle) Erroneous phase 
map retrieved with the TIE method and Tikhonov regularization. (right) Phase map 
retrieved with the prior knowledge of nylon's attenuation coefficient and refraction index. 
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Laplacian operator 2−∇  by ( )2 2 2 2( ) α∇ ∇ + , where α  is called the Tikhonov regularization 
parameter. In essence Tikhonov regularization seeks the minimum-norm, least squares solution 
for phase retrieval.  The retrieval result with Tikhonov regularization is still unsatisfactory, as is 
shown in Fig. (2)-(middle).  In contrast, the image shown Fig. 2-(right) is the correctly retrieved 
phase map using a different method that utilizes the prior knowledge of the single material 
(nylon) attenuation coefficients and its refraction indices. Unfortunately, the single material-
based method does not apply to general inhomogeneous tissues in medical imaging.  These 
findings show that the TIE-based phase-retrieval method suffers from intrinsic instability when 
the noise presets. The robustness of phase retrieval algorithms against noises in images is 
critical not only for retrieval accuracies but also for being able to reduce radiation doses 
involved, since suppressing x-ray quantum noise requires high radiation doses in imaging.  In 
clinical imaging applications it is imperative to limit radiation doses involved, hence it is 
important to develop robust phase retrieval approach for clinical applications.   For general 
inhomogeneous tissue samples encountered in medical imaging applications, a new phase 
retrieval method is pressingly needed.  
 
 Method: In 2008 we proposed a new phase retrieval method: the attenuation-partition 
based iterative phase retrieval method [Yan et al. 2008].  We have applied this method to the 
phase retrievals results for experimental images and found satisfactory results.  We have 
applied this new algorithm to retrieve the phase map of a breast lumpectomy specimen from its 
contact radiograph and  phase contrast image, which were acquired in our previous 
experiments.  We found that the noise spoiled the phase retrieval with the TIE method, and the 
Tikhonov regularization could not retrieve the phase map of the specimen either.  But the 
attenuation-partition based method, taking only 10 iterations, retrieved the phase map of the 
specimen [Yan et al. 2008].  However, only qualitative evaluation of the retrieved phase map 
was made at that time 
 In order to develop this phase retrieval method to its full potential, in the Year 2 we 
refined our attenuation-partition based iterative phase retrieval method for speeding up its 

convergence by modifying the algorithm coding, 
and performed quantitative and systematic 
evaluation of its robustness and efficiency 
compared to the widely used phase retrieval 
methods in the literature.  In order to simulate the 
morphological features of breast tissues, we first 
construct a digital breast specimen model. We 
adopted a radiograph of a breast lumpectomy 
specimen with pixel values rescaled and the 
localization wire removed with a pixel-value 
interpolation. The linear attenuation coefficients and 
electron densities for the50% glandular and50%  
adipose breast tissues are computed from the 
tissue’s elemental composition and the interpolated 
elemental mass attenuation coefficients from the 
standard reference. Moreover, each mass 
attenuation coefficient is further broken down to two 
components: one from x-ray photoelectric 

absorption and coherent scattering, and another from incoherent scattering.  In addition, four 
small ellipsoids of calcium carbonate (CaCO3) are embedded in the specimen model to 
simulate the breast microcalcification in [Yan et al. 2010].  To simulate the noise encountered in 
the practice of phase retrieval, we added into the data the Poisson-distribution random noise, 

Fig. 3.  Flow chart of the attenuation-
partition based iterative algorithm for 
general phase retrieval. 
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and the error caused by the misalignment between an object's radiograph and its phase-
contrast image acquired at a large sample-detector distance. The misalignment could be 
resulted from the shift or tilting of the object or detector between the two projections. In the 
algorithm performance analysis, we systematically compared the performance of this new 
algorithm with two widely used phase retrieval algorithms in the literature, namely the 
Gerchberg-Saxton (GS) method and the Transport of Intensity Equation (TIE) method [Allen et 
al. 2001].   
 The flow chart of our attenuation-partition based iterative algorithm is shown in Fig. 3.  In 
this flow chart 2

oA denotes the attenuation-contrast image, and 2
KNA the Compton-scattering 

contrast image,φ the phase map, I the phase contrast projection image, and the hypothetical 
phase contrast image formed by the sample electron densities only.  Two transforms are 
implemented in Fig. 3,  one is the Fresnel diffraction transform, the other is the phase-
attenuation duality transform [Yan et al. 2010].   Our idea underlining the algorithm flow chart is: 
use the correlation of tissue attenuation cross-section with its phase cross-section to eliminate 
the singularity in the phase retrieval operator. This is an extension to general samples of the 
phase-attenuation duality for soft tissues [Wu et al. 2005]. we first isolates the Compton 
scattering cross-sections from tissue’s total attenuation image, and correlate the Compton 
scattering cross-section with tissue's phase cross-section, and retrieve an approximate phase 
map by the phase-attenuation duality method [Wu et al. 2005], which is singularity-free and 
intrinsically stable.   We then iteratively incorporate the rest attenuation cross-section into phase  
 

Fig. 4. Comparison of the TIE method and the AP-based method with the noise added in the simulations. 
(a) The true phase map. (b) Contact radiograph with noise. (c) Normalized phase contrast image with 
noise. (d) Phase map recovered with the TIE algorithm but without Tikhonov regularization. (e) Phase map 
recovered with TIE algorithm and with Tikhonov regularization; (f) Phase map recovered with the APBA 
after10 iteration steps.   Note that the enhanced track in (c) is formed from the phase-sensitive projection 
of small residual variations along the removed guide-wire track in the digital specimen model.  
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retrieval by repeatedly correcting errors, which is calculated as the differences between the 
measured image intensities and the Fresnel diffraction estimates [Yan et al. 2010].    
 
 Result: In the second period of this project we refined our attenuation-partition based 
iterative phase retrieval method for speeding up its convergence. We systematically and 
quantitatively compared the performance of this algorithm with other two widely used phase 
retrieval algorithms, namely the Gerchberg-Saxton (GS) method and the Transport of Intensity 
Equation (TIE) based method. The systematic comparison is conducted by analyzing phase 
retrieval performances with a digital breast lumpectomy specimen model. We show that the 
proposed algorithm converges faster than the GS algorithm in the Fresnel diffraction regime, 
and is much more robust against image noise than the TIE algorithm. As an example, Fig. 4  
(a)-(f) show the comparison of the TIE method and our attenuation-partition based method for 
the digital breast lumpectomy specimen model.  Our work was published in Optics Express in 
July 2010 [Yan et al. 2010]. The paper is enclosed in the Appendix of this report for review. 
 
(B). Build the prototype system  
  
Since the project does not support equipment purchase, most of the system components are 

those available from our 
subcontractor Dr. Liu's 
laboratory at University of 
Oklahoma.  Dr. Liu and his 
group performed the works 
of integrating the hardware 
components to a prototype 
system.  The system 
hardware integration have 
been continued in this 
period.  In last period, 
during the hardware 
integration, the tube 
assembly malfunction 
occurred, and eventually 
the tube assembly and its 
controller failed.  After 
tedious efforts in dealing 
with the OU offices and the 
vendor (Hamamatsu 
Photonics) for the repair 
costs and repair 
arrangements, finally a 
working source system 

becomes available in this period.  The system integration is completed in this period.  The 
completed High Energy X-Ray Phase Contrast Imaging System, as is shown in Fig. 5, is briefly 
described as follows.  
 
The X-ray Source (the red box in Fig. 5): The source is a microfocus x-ray source (Model 
L8121-03, Hamamatsu Photonics, Japan) was utilized for the system. The x-ray tube consists of 
a tungsten target and a Beryllium output window. The tube has a tungsten-target and a uniform 
circular focal spot of 50μm in diameter for 75 W power loading, and a focal spot of 7μm for tube 
10 W, and  the tube can operate at up to 150 kVp. 

Fig. 5. A high energy x-ray phase contrast imaging system 
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The Image Detector (Fig. 5): Since tissue phase-contrast fringes recorded is proportional to the 
Laplacian and gradient of phase-shifts, hence the detector should have high sampling 
frequency.  The image detection system was a computed radiography system with 
mammography plates (Regius 190, Konica Minolta Medical Imaging, Wayne, New Jersey) with 
dimensions of 24 by 30 centimeters (cm). The mammography plates were designed with a focus 
on optimizing the image formulation based on low energies, which may not provide optimal 
results at high energies. The use of general radiography plates may be beneficial instead, due 
to the alternate design for utilization at high energies. However, the CR system processes the 
mammography plates with a pixel pitch of 43.75μm , while general radiography plates are 
processed with a pixel pitch of 87.5μm . Due to the fact that the mammography images are 
produced with double the spatial resolution, they were used for acquisition of the initial images. 
However, the next step in this research is to investigate the tradeoff between the higher spatial 
resolution of the mammography plate with the higher quantum efficiency of the general 
radiography plate, to determine which of the plates provides optimal images at high energies.  
 
The Geometric Configuration Setting on an Optical Bench (Fig. 5): In order to operate the 
prototype in both conventional and phase contrast imaging modes for comparisons, the imaging 
and measurement components (the x-ray tube, CR-plate) are mounted on an optical rail, which 
allows to vary the source-object distance R1 and object-detector distance R2 as needed.  It 
allows a SID of 1.83 m.  The object to detector distance R2 should be sufficiently large as well to 
allow phase-shifted x-rays to diffract as forming a phase-contrast image.  This is because the 
imaging-geometry should optimize the phase contrast visibility by balancing the conflict  
 
 
 

Fig. 6. Image of the Mammography BR3D phantom (140 kVp, 6.4 mAs.) 
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requirements of x-ray spatial coherence, large diffraction fringes and finite sizes of the focal spot 
size and finite detector pitch.  In a previous work we found that the phase-contrast that could be 
imaged is proportional to the relative phase-visibility factor (RPF) [Wu et al. 2004].  From the 
estimated relative phase-visibility factors with different geometric setting for this system, the 
optimal magnification factors are found to be in the range of 2 to 2.3. 
 
Preliminary Testing:  Phantoms were used for demonstrating the system's functionality with high 
energy x-rays.  One of the test images is shown in Fig. 6. This is an Image of the 
Mammography BR3D phantom (Model 020, CIRS, Norfolk, Virginia), which provides tissue 
equivalent images for qualitative assessment of image quality. The phantom simulates a 
realistic clinical image, not only through its composition, which is 100% adipose and glandular 
tissues blended together in an approximate 50/50 ratio, but also through the 5 cm thickness. In 
addition, the fifth 10 mm layer of the phantom is a target slab imbedded with targets such as 
specks, masses and fibers.  The image as acquired with a high energy phase contrast prototype 
system using a Hamamatsu x-ray source with a focal spot size of 7 µm and a Konica-Minolta 
Computed Radiography System with mammography plates. The SID was 1.83 m, and the SOD 
was 0.91m feet, which deliver a magnification factor of 2 for the phase contrast images. The 
image was acquired at an experimental setting of 140 kV, 6.3 mAs (71 µA, 90s.)   
 
In summary, the system hardware integration has been completed in this period.  The tests 
showed that the system is functional for phase contrast image acquisition with high energy x-
rays.   The efforts for technique optimization are under the way. Especially, we will continue to 
seek the ways to match the CR-plate's quantum detection efficiencies with the high energy x-
rays as the tube operating at 120-150 kVp. One way is to use the general radiography CR-
plates of a pixel pitch of 87.5μm , and investigate the tradeoff between the higher spatial 
resolution of the mammography plate with the higher quantum efficiency of the general 
radiography plate, to determine which of the plates provides optimal phase contrast images at 
high energies. Another possible better solution is to  keep reading the general radiology CR-
plates in the high sampling mode of the Konica REGIUS 190 Reader.  But so far the vendor is 
resisting to give us the access code for the reader control for using this unusual sampling 
method. 
 
 
Key Research Accomplishments 
 
 

• It is imperative to limit radiation doses involved in any clinical imaging applications. 
Hence it is important to develop robust phase retrieval approaches against the noise, 
and thereby to enable radiation dose reduction in phase imaging.  The mostly used 
phase retrieval method is based on the Transport Intensity of Equation (TIE).  We 
showed that the TIE method fails to provide robust phase retrievals against image noise 
and the alignment errors.  In this period we refined the attenuation-partition based phase 
retrieval method for speeding up the iteration convergence, and systematically and 
quantitatively compared its performance against that of the TIE-based method.  A digital 
breast lumpectomy specimen model was constructed for facilitating the quantitative 
evaluations. We showed that the attenuation-partition based phase retrieval method 
converges faster than the GS method, and is much more robust against image noise 
and the alignment errors than the TIE-based method does. 
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• The system hardware integration has been completed in this period.  The tests showed 
that the system is functional for phase contrast image acquisition with high energy x-
rays.   The efforts for technique optimization are under the way. 
 
 

Reportable Outcomes 
 
 

 In this project period we have published the research results in peer-reviewed journals 
and presented the work in an international conference, as listed in the following. 
 
 Peer-Reviewed Journal Article: 

 
 A. Yan, X. Wu, H. Liu, Performance analysis of the attenuation-partition based iterative 
 phase retrieval algorithm for in-line phase-contrast imaging, Optics Express 18: 16074-
 16089 (2010) 
 
 This journal is the top-ranking journal in terms of the Impact Factor among all sixty-four 
 journals in the field of Optics. 
 

 
 Published Abstract and Conference Presentation: 
 

X. Wu, A. Yan, H. Liu, Improving robustness of phase retrieval in x-ray phase contrast 
imaging, Medical Physics 37: 3357 (2010) 

 
 X. Wu, A. Yan , H. Liu, “Improving robustness of phase retrieval in x-ray phase contrast 
 imaging,” Oral Presentation at the 52nd Annual Meeting of the American Association of 
 Physicists in Medicine, July 19, 2010, Philadelphia, PA. 
 
 
Conclusion 

 
 

With the support by USAMRMC we have successfully conducted studies on x-ray phase 
imaging in the second period of this project.  In this period, we focused on the development of a 
new phase retrieval method that is robust against the noise, and thereby enabling radiation 
dose reduction in phase imaging.  We showed that the mostly used phase retrieval method (the 
TIE method) fails to provide robust phase retrievals against image noise and the alignment 
errors.  In this period we refined the attenuation-partition based phase retrieval method for 
speeding up the iteration convergence, and systematically and quantitatively compared its 
performance against that of  the widely used method.  A digital breast lumpectomy specimen 
model was constructed for facilitating the quantitative evaluations. We showed that the 
proposed method is much more robust against image noise and the alignment errors than the 
mostly used method does.  This new method enables large radiation dose saving in phase-
sensitive imaging 
 
 In this period we have completed the system hardware integration.  The tests 
demonstrated that the system is functioning for phase contrast image acquisition with high 
energy x-rays. The efforts for technique optimization are under the way.  
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 In the coming third period we will continue the efforts in improving the prototype's 
performance. Especially, we will continue to seek the ways to match the CR-plate's quantum 
detection efficiencies with the high energy x-rays from the tube operating at 120-150 kVp.   With 
the planned use of general radiography CR-plates of a pixel pitch of 87.5μm , we will especially 
need to incorporate the detector response into the phase retrieval algorithms for accurate phase 
retrieval.   We will conduct phase imaging experiments with custom-made breast phantoms, and 
will reconstruct the phase maps of the phantoms.  We will experimentally verify the radiation 
dose saving with the phase imaging with high energy x-rays, and verify the accuracies of the 
reconstructed maps of the projected electron densities of the imaged phantoms. 
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 Published Abstract: 
 

X. Wu, A. Yan, H. Liu, Improving robustness of phase retrieval in x-ray phase contrast 
imaging, Medical Physics 37: 3357 (2010) 

 
                                                                                                                                       



Performance analysis of the
attenuation-partition based iterative
phase retrieval algorithm for in-line

phase-contrast imaging

Aimin Yan,1,∗ Xizeng Wu,1,∗ and Hong Liu 2
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2Center for Bioengineering and School of Electrical and Computer Engineering,
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Abstract: The phase retrieval is an important task in x-ray phase contrast
imaging. The robustness of phase retrieval is especially important for
potential medical imaging applications such as phase contrast mammogra-
phy. Recently the authors developed an iterative phase retrieval algorithm,
the attenuation-partition based algorithm, for the phase retrieval in inline
phase-contrast imaging [1]. Applied to experimental images, the algorithm
was proven to be fast and robust. However, a quantitative analysis of the per-
formance of this new algorithm is desirable. In this work, we systematically
compared the performance of this algorithm with other two widely used
phase retrieval algorithms, namely the Gerchberg-Saxton (GS) algorithm
and the Transport of Intensity Equation (TIE) algorithm. The systematical
comparison is conducted by analyzing phase retrieval performances with
a digital breast specimen model. We show that the proposed algorithm
converges faster than the GS algorithm in the Fresnel diffraction regime,
and is more robust against image noise than the TIE algorithm. These
results suggest the significance of the proposed algorithm for future medical
applications with the x-ray phase contrast imaging technique.

© 2010 Optical Society of America
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1. Introduction

Differing from the conventional x-ray imaging, which relies on the small differences in x-ray
attenuation changes between tissues variable structure, inline phase contrast imaging is based
on the tissues’ phase-shifts diffraction from the object to the detector. Since x-ray phase-shift
differences between tissue and lesions are about one thousand times larger than attenuation
differences [2, 3, 4], x-ray phase contrast imaging has the potential to enhance the lesion detec-
tion sensitivity and specificity, and reduce the radiation dose compared to conventional x-ray
imaging. In the inline phase contrast imaging, the diffracted phase-shifts form bright and dark
fringes at tissue boundaries and this bright and dark fringes are called edge enhancement. The
edge enhancement relies on the spatial coherence of the x-ray source, the Laplacian and gra-
dients of x-ray phase-shifts caused by the tissue, and the gradients of the objects attenuation
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. One procedure of phase contrast imaging is to disentangle
tissue phase-shifts from the mixed contrast mechanism and recover the phase maps from ac-
quired phase contrast images. This procedure is called phase retrieval. Phase retrieval technique
plays a central role in phase contrast x-ray imaging. By means of phase retrieval, one can recon-
struct a quantitative map of phase-shifts, a phase image of the imaged object [4, 7, 14, 16, 17].
The amount of x-ray phase-shifts φ by tissues is determined by

φ(~r) =−
(

hc
E

)
re

∫
ρe(~r,z)dz =−

(
hc
E

)
reρe,p(~r), (1)

where re is the classical electron radius, h the Plank constant, c the speed of light, E the x-ray
photon energy, and ρe,p, the integration of the electron density ρe over the x-ray path, is called
the projected electron density [2, 3, 4]. So a retrieved phase map is equivalently a map of imaged
object’s quantitative projected electron densities. Moreover, phase retrieval is also a necessary
procedure for phase-sensitive volumetric imaging, such as the phase sensitive tomography and
tomosynthesis, to acquire the artifact free 3D images of object attenuation coefficients and
electron densities [8, 15, 16].

Phase retrieval is based on x-ray propagation equation derived either from the Fresnel diffrac-
tion or the Wigner distribution based phase-space formalism [5, 18, 9, 19, 20]. To be specific,
let φ(~r) be the x-ray phase-shift caused by the imaged object, and A0(~r) the x-ray transmis-
sion, or the attenuation-map of the object. Then the Fourier transform of the x-ray intensity,
F̂ (I)(~u) =

∫
R2 I(~x)exp [2πi~x ·~u]d~x, at position away from the object with distance R2, of the

monochromatic point x-ray source starting at a place away from the object R1 distance, can be
modeled by the following [9]

F̂ (I)
(

~u
M

;R1 +R2

)
= Iin

{
cos

(
πλR2

M
~u2

)
· F̂ (

A2
0
)

+

+
[

2sin
(

πλR2

M
~u2

)
−

(
2πλR2

M
~u2

)
· cos

(
πλR2

M
~u2

)]
· F̂ (

A2
0φ

)−

− cos
(

πλR2

M
~u2

)
· λR2

2πM
· F̂ (

∇ · (A2
0∇φ

))−

− λR2

4πM
sin

(
πλR2

M
~u2

)
· F̂ (

∇2A2
0
)}

, (2)
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where Iin is the incident x-ray intensity at R1, λ the wavelength of the monochromatic point x-
ray source and M = (R1 +R2)/R1 is the geometric magnification. When the FT-Space Fresnel
propagator πλR2~u2/M ¿ 1, Eq. (2) can be simplified to the Transport of Intensity Equation
(TIE) [21, 4, 9]

I(~r;R1 +R2) =
Iin

M2

{
A2

0

(
~r
M

)
− λR2

2πM
∇ · (A2

0∇φ
)(

~r
M

)}
. (3)

It is worthy to note that Eq. (3) is valid only for moderate resolution images. For high resolution
images, i.e. when the FT-Space Fresnel propagator πλR2~u2/M is close or greater than π , any
phase retrieval algorithms based on Eq. (3) need to be substituted to Eq. (2) [22, 23, 24]. In this
paper, the algorithms discussed are all based on Eq. (3), i.e. the moderate resolution is satisfied.

Numerous algorithms have been suggested on how to effectively recover the phase-shift from
the phase contrast images. Among these, two algorithms are most widely used. One is the TIE
algorithm implemented by Allen and Oxley in [25]. The other is the GS algorithm developed
first by Gerchberg and Saxton in [26] and later improved by Fienup [27, 28]. These two algo-
rithms have both their advantages and disadvantages. The TIE algorithm is a direct approximate
method which is fast but is unstable with noisy data; the GS algorithm on the other hand is rel-
atively more stable than the TIE algorithm[25] but the converging speed is slow especially for
the field of medical imaging. In [1], the authors developed an Attenuation-Partition Based Al-
gorithm (APBA) based on the phase-attenuation duality property of soft tissues under higher
x-ray energy. This algorithm is fast and stable for potential medical imaging. We compared the
performance of this algorithm with the TIE algorithm for two groups of data under the condi-
tion of medical imaging in [1], including the phase retrieval from phase-contrast images of a
breast lumpectomy specimen. In this paper, we will make a systematic analysis about this al-
gorithm and compare its performance with the one of the GS algorithm and the TIE algorithm
with simulated data.

The paper is organized as follows. In Section 2, we first summarize the attenuation-partition
based algorithm (APBA), which is motivated by our observation of the phase-attenuation
duality[14]. Then we give a measure, called total variation, used to evaluate the closeness of
two image data. This measure is used as a quantitative standard in comparing the performance
between different algorithms in the following section. In Section 3, we first develop a breast
specimen model which can reflect the attenuation and phase changes with respect to the x-ray
energy change (Section3.1), and then compare the performance of the algorithm with the GS
algorithm (Section 3.2) and the TIE algorithm (Section 3.3). Finally, we conclude this paper in
Section 4.

2. The attenuation-partition based algorithm (APBA) and an image accuracy measure

2.1. The Attenuation-Partition Based Algorithm

The attenuation-partition based algorithm (APBA) is a recently developed iterative algo-
rithm for phase retrieval[1]. It was derived from our previous notion of the phase-attenuation
duality[14], and it takes advantage of the correlation between the attenuation and phase-shift for
phase retrieval. As is well known, tissue’s attenuation change A0 in the diagnostic x-ray imag-
ing arose from three x-ray and tissue interactions: the photoelectric absorption, the coherent
scattering, and the incoherent scattering[29, 30, 9, 14]. However, among the three interactions,
the attenuation caused by incoherent scattering AKN, which is dominated by the x-ray Compton
scattering, deserves a special attention. This is because both of AKN and the x-ray phase-shift φ
are determined by the tissue’s projected electron density:

AKN(~r) = exp
[
−σKN

2
ρe,p(~r)

]
, φ(~r) =−λ reρe,p, (4)
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where λ is the x-ray wavelength, re the classical electron radius, ρe,p the projected electron
density as defined in Eq. (1), and σKN is the total cross section for x-ray Compton scattering
with a free electron:

σKN(Ephoton) = 2πr2
e

{
1+η

η2

[
2(1+η)
1+2η

− 1
η

log(1+2η)
]
+

+
1

2η
log(1+2η)− 1+3η

(1+2η)2

}
, (5)

with η = Ephoton/mec2. Here we denote the photon energy of the primary x-ray beam by Ephoton
and mec2 is the rest electron energy. Eq.(4) suggests clearly that the x-ray attenuation and phase-
shift by tissue has certain correlation. Our idea is to utilize this correlation for facilitating the
phase retrieval.

Of course, the extent of this correlation between phase and attenuation depends on the x-
rays photon energy as well as the tissues physical composition. For example, for light elements
with atomic numbers Z ≤ 10, x-ray attenuation is dominated by the Compton scattering for
x-rays of 60 keV or higher, i.e. A0 ≈ AKN[14]. We call this relationship between phase-shift
and attenuation the phase-attenuation duality. The phase-attenuation duality can be used for
phase retrieval as follows. Consider a phase contrast imaging setting with a point source of
wavelength λ . The object is at a distance R1 from the source. We denote R2 as the distance from
object to detector plane, M = (R1 +R2)/R1 the geometric magnification factor, Iin the entrance
x-ray intensity at R1, and ID(~rD) the x-ray intensity at the detector plane. For convenience,
we denote I = M2 · ID(~rD)/Iin as the normalized intensity of phase-contrast image. When the
phase-attenuation duality holds, the phase map φ(~r) can be robustly retrieved from just a single
projection image[14]:

A2
KN(~r) = D(I) = F̂−1

(
F̂ (I)

1+4π2k̃~u2

)
, φ(~r) =

(
λ re

σKN

)
ln

(
A2

KN(~r)
)
, (6)

where

k̃ =
λR2

2πM
· λ re

σKN
, (7)

and D, for sake of convenience, is called the “duality transform” acting on the normalized
image I.

In general imaging cases, such as with low energy x-rays or an object contains calcified
tissues such as calcification, this phase-attenuation duality does not hold. However, we can still
factor out tissue’s total attenuation A0 as

A0(~r) = AKN(~r) ·Ape,coh(~r), (8)

where we denote the attenuation caused by photoelectric absorption and coherent scattering
by Ape,coh. Strictly speaking, σKN is only Compton scattering cross-section, it may be slightly
different from the incoherent scattering cross-section for high-Z elements. This is because while
Compton scattering is x-ray scattering from the free electrons, the incoherent scattering is that
from the bound atomic electrons[31]. So when we factor A0 = AKN ·Ape,coh (Eq. (8)) we actually
factor the small residual binding effect of atomic electrons into Ape,coh. With this understanding,
Eqs.(4) and (8) are rigorously valid. The notion of Eq. (6) and Eq. (8) led us to the development
of the attenuation-partition based algorithm [1]. While the derivations and the algorithm details
of this method can be found from Ref. [1], a brief description of the method is as follows.
Our goal is to retrieve the phase map from the two normalized images: one is the object’s
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attenuation image A2
0 acquired with R2 = 0, and the other is the acquired phase contrast image

I = M2 · ID(~rD)/Iin with R2 > 0. Employing the acquired phase contrast image I and the duality
transform Eq. (6), we will first obtain an estimate for the attenuation-component AKN and phase
map φ . We then rewrite Eq. (8) as

A0 = AKN−δA, δA = AKN(1−Ape,coh), (9)

and find the correction term δA using the estimate of AKN. We then employing the Fresnel
Diffraction transform (as defined in Eq. (11)) to transport the wavefield δAeiφ from R1 to R2.
We can find δ I =

∣∣Fr

(
δAeiφ )∣∣2, which is the difference between phase contrast image I and

the “duality-only” counterpart IKN =
∣∣Fr

(
AKNeiφ )∣∣2. With the corrected “duality-only” im-

age intensity IKN =
(√

I +
√

δ I
)2

we can start a new round of iterations by repeating above
procedure. For a rigorous analysis of the iterative algorithm and its convergence interesting
readers are referred to [1]. Note that the equation

√
I =

√
IKN −

√
δ I is generally valid, since

it is actually a result of x-ray Fresnel diffraction and extremely smallness of hard x-ray wave-
length compared to finest resolution achievable in the phase contrast imaging. While interesting
readers can find the mathematical proof of this equation in [1], an intuitive explanation of this
formula comes from the x-ray propagation. In such a wave propagation process, or the so-called
semiclassical wave propagation, the phase of a wave field evolves essentially according to the
free-space Hamilton-Jacobi equation from its initial phase value. So if we denote the Fresnel
free propagation as a Fresnel transform Fr acting on the initial wavefield, therefore the two
resulted wavefields Fr (AKN exp[iφ ]) and Fr (δAexp[iφ ]) would have the same resultant phases,
so the resultant amplitude from the two-wave superposition is given as

√
I =

√
IKN −

√
δ I.

The above iterative procedure can be summarized in flow chart Fig. 1 and the Algorithm

Fig. 1. Flow chart of APBA

Algorithm. In an imaging experiment, assume we have performed two imaging measurements.
One image (radiograph) is the attenuation image A2

0 acquired at SID= R1, another is a nor-
malized phase-contrast image I = M2 · ID(~rD)/Iin acquired at SID= R1 +R2. With A2

0 and I as

well as the initial δ I, usually 0, as known inputs, we first assume IKN =
(√

I +
√

δ I
)2

. Then

(1). Compute AKN =
√

D(IKN) and φ from the duality transform Eq. (6).
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(2). Compute δA from
δA = AKN · (1−P), P = A0/AKN. (10)

Equations (9) and (10) are in fact the same equations. The advantage of Eq. (10) over
(9) is that we can set a threshold for P. We know P = Ape,coh in the ideal case and
Ape,coh is bounded between 1 and A0. The computation rounding error or the presence of
measured noise in the acquired data can make the value of P over pass these bounds in
the iterative computations. By setting a threshold upper bound ubd = 1 and lower bound
lbd = min(A0), the minimum value of A0, to P in the iterative computations, we can make
the algorithm more stable. Moreover, if we know a better lbd for Ape,coh, other than the
minimum of A0, the converging speed of the algorithm can be greatly improved.

(3). Compute δ I by Fresnel propagate δAeiφ from position R1 to R2: δ I =
∣∣Fr

(
δAeiφ )∣∣2 with

Fr (T )(~r) =
1

λR2

∫

R2
exp

[
i
πM
λR2

(
~r
M
−~ξ

)2
]

T (~ξ )d~ξ . (11)

(4). Compute IKN =
(√

I +
√

δ I
)2

. Go to (1) for next iteration.

The number of iterations or an accuracy measure can be used to determine when to exit the
program: assuming ‖·‖ is some kind of norm, that can effectively reflect the accuracy of the
retrieved data as an image, if ‖δ Ik+1−δ Ik‖ is less than a predefined threshold value β , or the
iteration step exceeds a predefined maximum number of iteration steps, then φ is the retrieved
phase and the iteration stops; otherwise further iteration is needed.

An appropriate image accuracy measure should be a measure that can effectively reflect
the accuracy of the data AND at the same time correctly reflect the visual perception of the
data as an image, since an image’s visual perception is crucial for diagnostic radiology. In the
next subsection the authors suggest a measure which can be employed as an appropriate image
accuracy measure, which was first investigated by Rudin in [32].

2.2. An Image Accuracy Measure

Fig. 2. Example “Lena” images used in measuring the closeness between images. (a) φ1,
(b) φ2, (c) φ3

A continuous signal is generally represented as a function of vector variables: f (~r). A sam-
pled signal will be represented as a one- (or higher) dimensional sequence of real numbers. In
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this paper, we will denote the continuous two dimensional image as an intensity function of
two dimensional variables, such as f (x,y), or f (~r),~r = (x,y). The sampled 2-D image will be
represented by f (i, j), i = 1,2, · · · ,m, j = 1,2, · · · ,n. In practice, to estimate a true signal in
noise, the most frequently used methods are based on the least squares criteria and thus an intu-
itive measure for the closeness of two image functions f and g is, similar to statistical standard
deviation, based on:

std(g, f ) :=

[∫
Ω (g(~r)− f (~r)−µ)2 d~r

]1/2

V (Ω)
, (12)

where Ω is the finite domain of image functions f and g, V (Ω) represents the area of domain
Ω, and µ =

∫
Ω(g− f )d~r/V (Ω) is the statistical mean value of g− f . In [32], L. I. Rudin

investigated the relation of edge formation of the 2-D digital image and the singularities of
the image function and pointed out that the image intensity function belongs to the space of
functions of bounded total variation. Rudin et al.[33] pointed out that the proper norm for
images is the total variation (TV) norm, which is the L1 norm of the gradient of the image
function, and not the L2 norm. For two image functions f and g, we define the TV norm of
g− f as the closeness of the two images:

TV(g, f ) :=
∫

Ω |∇(g− f )|d~r
V (Ω)

=

∫
Ω

√(
∂ (g− f )

∂ x

)2
+

(
∂ (g− f )

∂ y

)2
d~r

V (Ω)
, (13)

where ∇ is the gradient operator. Since std is the form of L2 norm, it is not suitable as a
measure to represent the closeness between two images. For example, for the three “Lena”
image functions shown in Fig. 2, the std measures of φ1−φ2 and φ1−φ3 are std(φ1,φ2) = 0.206,
std(φ1,φ3) = 0.472 respectively. But the image φ3 is much more closer to φ1 than φ2 does in
visual perception. This is because the digital representation of an image depends not only on
the pixel values, it also depends on the contrast changes between neighbor pixels. An image’s
visual perception is crucial for diagnostic radiology. This contrast changes between neighbor
pixels can better be represented by the gradient changes of the image functions. For example,
the TV measures of φ1 − φ2 and φ1 − φ3 are TV(φ1,φ2) = 0.0247 and TV(φ1,φ3) = 0.0138
respectively, more appropriate in reflecting the visual perception. In this paper, we will use the
TV norm (13) as the measure for closeness between two compared image functions.

Note that the TV norm between two image functions, say g and f , equals 0 if and only
if g differs from f by a constant. This feature does not affect its appropriateness for phase
retrieval since it is well known that the recovered phase φ is unique up to a constant with given
information about the attenuation-map A0 and the phase-contrast intensity-map I.

3. Simulation Tests

In order to investigate the performance of the algorithm constructed above, we perform com-
puter simulations in this section. In Section 3.1, we first construct a breast tissue model that
represents the phase-shifts and attenuation of breast tissues and embedded microcalcifications
for different x-ray energies. In our simulation tests, the distances of source point to object, R1,
and object to detector, R2, are set to 26 inches (0.66 m) respectively. In this way the magni-
fication factor M = (R1 + R2)/R1 is equal to 2. For convenience, the incident x-ray intensity
Iin at R1 is set to M2 (4). We compare the performance of our algorithm, APBA, with two
other widely used algorithms: the Gerchberg-Saxton (GS) algorithm (Section 3.2) and the TIE
algorithm (Section 3.3).
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3.1. A breast specimen model

The tissue’s phase-shift and attenuation are determined not only by the tissue’s physical com-
position, but also by the x-ray energy. With different x-ray energy, the same tissue has different
phase-shift and attenuation change. Simulation models used in literature often do not incorpo-
rate these changes. In this subsection, we construct a breast specimen model that can represent
tissue attenuation and phase shifts according to employed x-ray energies as well as tissue’s
compositions.

Fig. 3. Image manifest of (a) A2
pe,coh, (b) A2

KN and (c) A2
0 when x-ray energy equals 35.5 keV.

Fig. 4. Profiles of A2
pe,coh, the solid lines, and A2

KN, the dotted lines, when x-ray energy
equals (a) 18.5 keV, (b) 35.5 keV and (c) 59.5 keV.

In our model the tissue has two physical compositions: the 50% glandular-50% adipose
breast tissue and the microcalcifications. In order to simulate the morphological aspects of
breast tissues, we adopted a radiograph of a breast lumpectomy specimen with pixel values
rescaled and the metal localization wire removed by replacing the pixel value at wire position
with a mean pixel value at near by positions. It is difficult to remove all the residual trace of
the wire this way as can be seen from the following image display especially for the phase
contrast image (Fig. 5(c)). In the phase contrast image (Fig. 5(c)), the small residual variation
from the original wire-track really got enhanced. The linear attenuation coefficients and elec-
tron densities for the 50% glandular-50% adipose breast tissues are computed from the tissue’s
elemental composition and the interpolated elemental mass attenuation coefficients from the
standard reference in the mammographic radiation dosimetry [34, 35]. Moreover, each mass
attenuation coefficient is further broken down to two components: one from x-ray photoelec-
tric absorption and coherent scattering, and another from incoherent scattering. In this way,
the total attenuation is partitioned as a product of A2

pe,coh and A2
KN as defined in Eq. (8) above.
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In addition, to simulate the microcalcifications in breast, four small ellipsoids of calcium car-
bonate (CaCO3) are embedded in the specimen model. The diameter of the ellipsoids can be
adjusted in simulating different size of the microcalcifications. In the following simulations, to
test phase-contrast sensitivity, we set the diameters of the four ellipsoids to 10, 5, 10, and 5
microns in x-ray direction and 300, 200, 300, 200 microns in detector plane respectively.

The attenuation image A2
0 of the specimen model simulated with 35.5 keV x-ray, and its two

corresponding partition images A2
KN and A2

pe,coh, are shown in Fig. 3. For a comparison, the
profiles of A2

KN and A2
pe,coh along the line passing through the microcalcifications are shown in

Fig. 4 simulated with x-ray energy equals 18.5, 35.5 and 59.5 keV, respectively. We can see that
the contribution of A2

pe,coh to the total attenuation A2
0 gets smaller when x-ray energy is getting

higher. Especially, when x-ray energy equals 59.5 keV, the contribution of A2
pe,coh for the soft

tissue can almost be neglect, as is expected.

3.2. Comparison with the GS Algorithm

Fig. 5. Image representation of the inputs generated from the simulation model and Fresnel
propagation. (a) the phase map φ ; (b) the attenuation map A2

0; and (c) the normalized Fres-
nel propagated phase contrast image I with object to detector distance R2 = 26 in (0.66 m).

The GS algorithm is an iterative algorithm for phase retrievals from a pair of images at
two planes related by the Fourier transform. For details readers are referred to [26]. The GS
algorithm is a classical algorithm which is widely used in electron microscopy, wave front
sensing, astronomy, crystallography, and many other fields involving phase recovery [27, 28,
36].

By replacing the Fourier Transform in the GS algorithm with the Fresnel transform of
Eq. (11), we get a modified version of the GS algorithm extended to the Fresnel diffraction
regime. Our previous simulation tests showed that this modified GS algorithm converges very
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slow for object-detector distance R2 ≈ 1m, and converges faster for larger R2, such as images
acquired at synchrotron beam lines. But this is generally not applicable to the field of clinical
imaging, due to the physical constraints such as compact sizes of hospital rooms.

In our simulation tests, we compare the performance of APBA and that of the GS algorithm.
The photon energy of the point x-ray source is set to 35.5 keV, and the distances from the
source to object and object to detector are set to R1 = R2 = 26 inches (0.66 m) respectively.
For convenience, the incident x-ray intensity Iin at R1 is set to M2, where M = (R1 + R2)/R1
is the magnification factor. The phase map φ and the attenuation A2

0 are generated from our
phantom model for 35.5 keV x-ray. Fig. 5 shows the simulated images of the phase map φ , the
attenuation image A2

0 and the phase-contrast image I.

Fig. 6. Comparison of the performance of the GS algorithm and APBA. (a) plot of the
accuracy measures with respect to iteration steps. The plot with solid line represents the
APBA. The one with dashed line represents the GS algorithm; (b) recovered phase map
with the GS algorithm after 100 iterations; (c) recovered phase map with APBA after 100
iterations.

In the simulation test, the iteration for our attenuation-partition based algorithm (APBA)
and the GS algorithm are performed 100 steps. The corresponding recovered phase images are
shown in Fig. 6(b) and (c). In Fig. 6(a), the solid line represents the change of total variation
(TV) of the retrieved phase using attenuation-partition based algorithm with respect to the it-
eration steps. The dashed line represents the change of TV of the retrieved phase using the
(modified) GS algorithm with respect to iteration steps. We can see that the converging speed
of the (modified) GS algorithm is much slower than that of attenuation-partition based algo-
rithm (the change of TV of APBA from step 1 to step 100 is 1.04E−3, almost 33 times greater
than that, 3.17E−5, of the GS algorithm.) In addition, from the visual perception point of view,
we see that the phase map retrieved with the attenuation-partition based algorithm (APBA) is
much better than that retrieved with the (modified) GS algorithm.

The main difference between APBA and the GS algorithm is that APBA takes the advan-
tage of the phase-attenuation correlation property, although the extent of this correlation is not
known in priori, but the GS algorithm does not. From this example we see that the phase-
attenuation correlation is a very important information that shouldn’t be neglected in the algo-
rithm development for phase retrieval.

3.3. Comparison with the Transport of Intensity (TIE) algorithm

We have mentioned the transport of intensity equation in Eq. (3) in Section 1. Since Teague
proposed the TIE algorithm for phase retrieval in 1983 [21], numerous phase retrieval algo-
rithms have been suggested on how to effectively search the numerical solution of the TIE
[4, 20, 25, 37, 38, 39, 40]. Among the methods of solving the above TIE for the phase map,
the one based on Fast Fourier Transform, proposed by Nugent et al. [4], and Allen and Oxley
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in [25], is the most widely used. In the form of pseudo-differential operator, the solution phase
map φ is given by

φ(~r) =−2πM
λR2

∇−2

{
∇ ·

[
∇

[
∇−2

(
I−A2

0
)]

A2
0

]}
, (14)

for the given normalized phase-contrast image I and attenuation image A2
0. Here ∇ is the gradi-

ent operator, and ∇−2 is the inverse Laplacian operator.
The advantage of this algorithm is that it does not require the boundary information in solv-

ing the TIE (assuming the image data is periodic); it is a deterministic method and thus the
algorithm is fast and accurate comparing to most iterative algorithms. In this section we com-
pare the performance of the TIE algorithm and that of APBA for two kind of cases: first for the
ideal case without any noise and any image misalignment, then for cases simulating practical
situation with x-ray imaging noise and possible image misalignment. In these simulation tests,
the imaging geometries are the same as in the previous subsection, and x-ray energy is again
35.5 keV .

For the ideal case without any noise and any image misalignment, the performance compar-
ison results are shown in Fig. 7. For the ideal case the TIE algorithm is accurate both in TV
measure and visual perception. APBA can also achieves this accuracy but needs 1110 iteration
steps to have its TV measure of 0.00215226, an error smaller than that of 0.00215269 with the
TIE algorithm.

However, the real test lies in the performance for the cases simulating practical situation
with x-ray imaging noise and possible image misalignment. Obviously only the performance in
these cases really matters in phase contrast imaging applications, especially for clinical imaging
applications where the imposed radiation limits dictates existence of substantial x-ray quan-
tum noise in acquired images. Implemented in the Fourier space, the inverse Laplacian ∇−2

in Eq. (14) is singular at zero spatial frequency. This singularity will amplify the noise in the
images and result in failure of accurate phase retrieval for the TIE algorithm. To overcome this
difficulty, some kind of regularization must be used. The most widely used regularization is
Tikhonov regularization, which replaces ∇−2 by |~u|2 /(|~u|4 + κ2), for some “favorable” con-
stant parameter κ , called the Tikhonov regularization parameter. In this regularization scheme,
the singularity is regularized, and the favorable parameter κ means the retrieved phase φκ corre-
sponding this κ is as close to the true phase φ as possible. Roughly speaking, the regularization

Fig. 7. Comparison of APBA and the TIE algorithm with pure data. (a) plot of the accuracy
measure with respect to iteration steps. The plot with solid line represents the APBA. The
one with dashed line represents the TIE algorithm. It needs 1110 steps for the TV measure,
0.00215226, of APBA to achieve to the TV measure, 0.00215269, of TIE; (b) recovered
phase using the TIE algorithm; (c) recovered phase using APBA after 1500 iteration steps.
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parameter κ is inversely proportional to the images signal-noise ratio. Two problems, however,
arise to this regularization. First, the true phase φ is not known in real situations. So the regu-
larization parameter κ is not a priori, which makes it difficult in practical applications. Second,
this Tikhonov regularization is based on finding a stable solution to Ax = y, in Hilbert spaces
X , Y , by solving the minimization problem

xκ = argmin
x∈X

‖Ax− y‖2
Y +κ ‖x‖2

X . (15)

It is L2 norm dependent. Since the proper norm for image data is the total variation (TV) norm
[33], a favorable solution under the Tikhonov regularization principle can not be guaranteed
a best solution in visual perception. Moreover, for relatively noisy acquired images, the TIE-
based algorithm, even with Tikhonov regularization, often failed to retrieve the phase maps[1].

Fig. 8. Comparison of the TIE algorithm and APBA with noise added. (a) True phase map
φ ; (b) attenuation map A2

0; (c) the normalized phase contrast image I; (d) recovered phase
map with the TIE algorithm, no Tikhonov regularization is used; (e) recovered phase map
with the TIE algorithm with Tikhonov regularization; (f) recovered phase map with APBA
after 10 iteration steps. In the simulation, the acquired data is assumed to have a level of
δb = 0.03% detector noise and one pixel misalignment between A2

0 and I horizontally.

In the following, we will compare the performance of APBA and the TIE-algorithm when noise
is present. In the practice of phase retrieval, there are generally two kinds of image data errors.
One is the noise associated with image acquisitions, including the quantum noise of x-ray pho-
ton detections and detector electron noise. We assume the quantum noise dominates as is the
case in most imaging applications. The other is the error caused by the misalignment between
the attenuation map A2

0 and phase-contrast image I. This is because usually the attenuation
image and corresponding phase contrast image are generally acquired in two separate x-ray
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exposures. The misalignment could be resulted from the shift or tilting of the object or detector
between the exposures. In the simulation, we associate each pixel value of an image a photon
count N, so that P(i, j) = c ·N(i, j), where c is a constant. Assuming the noise has a Poisson dis-
tribution, with variance σ2 = N at each pixel. In the simulation we assign a background noise
level for each simulated image. This background noise level is defined as the ratio δb = σb/Nb
corresponding to the direct exposure area (where A2 = 1) outside the object in background. The
Poisson statistics dictates that Nb = 1/δ 2

b and in this way the photon count N(i, j) can be deter-
mined accordingly at each pixel. Once N(i, j) is determined, the statistical errors at each pixel
can be assigned using a computer simulated random Poisson distribution generator with mean
corresponding to the photon counts N(i, j). In the simulations below, the background noise
level δb is set to 0.0003. The images with the noise added are shown in Fig. 8(b) and (c). The
quality of an image depends not only on the noise level but also on the extent of image contrast
change. With the assumption P(i, j) = c ·N(i, j) above, one can easily see that δb = σPb/Pb is
the statistical coefficient of variation in absorbed photon numbers in background. δoi = σPoi/Poi,
the coefficient of variation of the object image, on the other hand, is the structural coefficient of
variation of the sampled image, which reflects the image’s normalized extent of image contrast
change. We will use the ratio δoi/δb to reflect the image quality. The larger the ratio, the higher
the image quality. In our simulation models, when δb = 0.0003, the corresponding ratio δoi/δb
for attenuation A2

0 and phase-contrast image I, Fig. 8(b) and (c), are 1.67 and 6.35 respectively.
Because of the phase-contrast effect, the image quality of the phase-contrast image I is higher
than the attenuation image A2

0 although they have the same background noise level.
Three simulation tests are performed in the comparison: case1: assume the acquired data A2

0
and I has noise present but perfectly aligned; case 2: assume acquired data has no noise but
has one pixel misalignment horizontally; case 3: assume acquired data has combined detector
noise as well as one pixel misalignment. One bias in simulation for the TIE-algorithm should
be mentioned: with the known true phase value, a favorable Tikhonov regularization parameter
κ can be searched, but in practice this search is hardly feasible. In each case mentioned above,
three phase retrievals are performed: 1. using the TIE-algorithm without Tikhonov regulariza-
tion; 2. using the TIE-algorithm and the favorable Tikhonov regularization parameter; 3. using
APBA with 10 step iteration. The Total variation (TV) of the results are listed in Tab. 1 and
the recovered phase images for case 3 are shown in Fig. 8(d) – (f). The results using Tikhonov
regularization are better than those not using Tikhonov regularization but worse than those us-
ing APBA. The influence of misalignment to APBA is little but disaster to the TIE algorithm.
From the profile, shown in Fig. 9, along a line passing through the microcalcifications we can
see that the values of the phase recovered from APBA is very close to the true phase value, but
the values of the phase recovered from the TIE algorithm are distorted.

4. Discussion and Conclusion

Table 1. TV comparison of the TIE algorithm and APBA. In the table, κ is the Tikhonov
regularization parameter, ∆ represents the sampling step-size in FT-space.

TV =
Case 1 Case 2 Case 3

TIE: no Tikhonov 0.0406 0.0808 0.0886
κ = 0.7828∆2 κ = 4.4421∆2 κ = 4.1076∆2

TIE: with Tikhonov 0.0399 0.153 0.0379
APBA 0.0283 0.0086 0.0290
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Fig. 9. Profiles, along a line passing through the microcalcifications, of the recovered phase
using APBA, the solid line, and using the TIE algorithm with Tikhonov regularization, the
dashed line, in Case 3. The dash-dotted line is the true phase.

In above analysis, we assumed that the x-ray source is a quasi-monochromatic point source. In
practice, one often employs conventional incoherent and polychromatic sources such as x-ray
tubes for imaging. In the experiments with an x-ray tube source, the previous formula Eqs. (2–
3) of the phase contrast image intensities should be modified. Since in the APBA method the
duality transform is derived based on Eq. (3), hence the Eq. (6) should be modified accordingly.
In our previous works we have studied this problem [20]. With the Wigner function based phase
space formalism, we have proved that the coherence degree of a finite-size focal spot can be
accounted for by the optical transfer function OTFG.U.(~u/M) for the geometrical unsharpness
associated with the finite-size source [20]:

OTFG.U.


 ~u

M


 =

∫
Ispot(~ξ )exp

[
i2π~ξ · (M−1)~u

M

]
d~ξ

∫
Ispot(~ξ )d(~ξ )

where Ispot(~ξ ) is the intensity distribution of the focal spot. We found the generalized TIE
equation with an x-ray tube source, that is, the x-ray intensity at the detector is given by [20]:

I(~r;R1 +R2) =
Iin

M2 F̂−1
(

OTFG.U.


~u

M




)
⊗

{
A2


~r

M


− R2〈λ 2〉

2πM〈λ 〉∇ ·

A2∇φ


~r

M







}
,

where operator ⊗ denotes the convolution, A2 is the total attenuation of the imaged object, φ is
the spectrally averaged phase-shift caused by the object, and 〈 · 〉 means the spectral average.
Compare above equation with Eq. (3) and it is clear that the TIE-based phase retrieval method
needs only two modifications: (i). Fourier space de-convolution of the measured intensity from
OTFG.U.(~u/M), (ii). Replacing wavelength with the spectral-averaged 〈λ 2〉/〈λ 〉. In the same
fashion, the duality transform D defined in Eq. (6) should be modified with (i). Fourier space de-
convolution of the measured intensity from OTFG.U.(~u/M); (ii). A replacement of the parameter
k̃ defined in Eq.(7) with the spectral-average

〈k̃〉=
reR2

2πM
·
〈

λ 2

σKN

〉
.
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Otherwise, the APBA flow chart is the same as that for the case with a quasi-monochromatic
point source.

Phase retrieval is a crucial step for quantitative imaging such as reconstructing the 3-D dis-
tribution of tissue linear attenuation coefficients and refraction indices. However, images ac-
quired in medical applications are relatively noisy, due to the radiation dose constraints, with
low phase contrast effect, due to physical constraints such as compact sizes of hospital rooms.
An phase retrieval algorithm which is robust to noise is necessary for potential medical phase
contrast imaging. In [1], the authors developed an algorithm, called attenuation-partition based
phase retrieval algorithm. It is an iterative algorithm which takes advantage of the correlation
between the attenuation and phase-shift. The phase retrieval results from experimental images
show that this algorithm is fast and robust [1]. In this work, we systematically compared the
performance of this algorithm with other two widely used phase retrieval algorithms, namely
the Gerchberg-Saxton (GS) algorithm and the Transport of Intensity Equation (TIE) algorithm.
The systematical comparison is conducted by analyzing phase retrieval performances with a
digital breast specimen model. We show that the proposed algorithm converges faster than the
GS algorithm in the Fresnel diffraction regime, and is more robust against image noise than
the TIE algorithm. These results suggest the significance of the proposed algorithm for future
medical applications with the x-ray phase contrast imaging technique.
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processed using two algorithms to localize events: (i) simple-threshold and 
(ii) weighted-centroid methods. The processed frames were added to give
the final image. Results: (i) Stationary collimator: The image showed a 
grid-like pattern corresponding to the septa walls of the collimator. All of
the hot rods in the phantom can be identified. (ii) Moving collimator: The 
septal pattern is blurred out, and all of the rods can be clearly identified.
Conclusion: The same MAF can be used in both nuclear-medicine imaging 
and x-ray imaging in SPC mode for dual-mode imaging. Currently we are 
limited by collimator resolution for radionuclide imaging. Support from:
NIH Grants R01EB002873 and R01EB008425.

MO-E-204C-02
Bedside SPECT Imaging with Pinhole Collimation
A Cebula1 *, D Gilland1, M Studenski2, (1) University of Florida,
Gainesville, FL, (2) Thomas Jefferson University, Philadelphia, PA

Purpose: The objective of this study is to evaluate the imaging performance 
of a mobile SPECT system with a pinhole collimator and compare the
results with parallel hole collimators.  The goal is to obtain both planar and 
tomographic performance measures with Tc-99m and F-18. This abstract 
presents the results using Tc-99m. Method and Materials: The system
utilizes a small field of view camera with pixilated NaI crystal and position-
sensitive photomultiplier tubes.  The pinhole collimator is a tungsten knife 
edge with a hole diameter of 3mm, a focal length of 12.5cm, and an 
acceptance angle of 90 degrees.  The parallel hole collimators have been 
previously described along with their imaging performance evaluation [1].
The following performance measures with the pinhole collimator were
obtained and are presented here: count rate performance, energy resolution,
flood field uniformity, system spatial resolution, system sensitivity. Results:
The maximum count rate was calculated to be 1.58x105 cps corresponding to
an activity of 161 µCi at 30cm. An energy spectrum from the flood 
acquisition demonstrated an energy resolution of 20% FWHM.
Magnification corrected, system planar spatial resolution was 1.03 cm with a 
system sensitivity of 1.39 cps/µCi at a source to collimator distance of 10 
cm. Conclusion: The imaging performance of a mobile SPECT system
with a pinhole collimator has been presented.   In comparison to parallel 
hole collimation, the pinhole collimator provides superior spatial resolution
and sensitivity at distances less than 5cm.  However, at further distances,
pinhole sensitivity declines while parallel hole sensitivity remains relatively 
constant.
Research sponsored by the United States Army Medical Research and
Material Command under Award No. W81XWH-04-1-0594

MO-E-204C-03
On the Development of On-Board PET with Tomotherapy Using Open 
Dual Ring Geometry 
N Darwish1 *, T Mackie2, B Thomadsen3, C Kao4, (1) University of
Wisconsin, Madison, WI, (2) University of Wisconsin - ADCL, Madison, 
WI, (3) University of Wisconsin, Madison, WI, (4) Univ Chicago, Chicago,
IL

Purpose: Positron emission tomography (PET) using open dual ring
geometry was investigated as an on-board system for functional imaging and 
PET marker tracking, specifically with tomotherapy. The dual ring PET 
would allow measurement of both inter and intra-fractional variation,
facilitating the determination of treatment uncertainties and improving the 
delineation of tumor volume at any stage in the radiation treatment delivery 
process. This study demonstrates the field of view (FOV) of various PET
ring axial gaps, the sensitivity of each system for each gap, and the image 
quality as a function of scan time and activity for one specified design.
Method and Materials: Investigation of FOV and sensitivity of each design 
was accomplished via Monte Carlo simulations with GATE, the Geant4
Application for Emission Tomography. Image quality was investigated with 
a fully 3D OSEM iterative reconstruction algorithm for noiseless data to 
investigate the FOV and noisy data to investigate the scan time at a specified 
activity. Results: Even when the axial gap (G) exceeded the axial width (W)
for each open ring system as in the extreme case of G = 600 mm (required to
avoid actuators holding MLC’s) the axial FOV was approximately 200 mm.
A continuous axial and transaxial FOV (determined by PET ring diameter)
of 360 mm and 450 mm respectively resulted from G=W=120mm.
Reconstructed NEMA 2001 phantom images for activity of 15 mCi/70kg
and scan times ranging from 10 to 100 seconds was demonstrated without
the effect of attenuation, scatter, and random events. Conclusion: For

tomotherapy treatment 200 mm continuous FOV axially was sufficient and 
was achievable with all gaps simulated in the range from 120 mm to 600 
mm. Open dual ring on-board PET has the potential to acquire images 
within the time limit of a tomotherapy treatment session.

MO-E-204C-04
Improving Robustness of Phase Retrieval in X-Ray Phase Contrast
Imaging 
X Wu1 *, A Yan1, H Liu2, (1) Univ Alabama Birmingham, Birmingham,
AL, (2) Univ Oklahoma, Norman, OK

Purpose: The phase retrieval, retrieving tissue phase maps from the x-ray
phase contrast images, is an important task in x-ray phase-sensitive imaging.
The robustness of phase retrieval algorithms is of critical importance for
reducing radiation doses in clinical applications.  We show that the 
conventional phase retrieval method is actually unstable against the quantum
noise. We present a more robust phase retrieval method that we developed.
Method and Materials: We first studied the phase retrieval by means of 
the conventional Transport of Intensity Equation (TIE) method for phantom
imaging (such as a nylon air bubble wrap). For improvement we developed 
a robust phase retrieval method based on our notion of the phase–attenuation
duality and attenuation partition, and derived a robust iterative phase 
retrieval algorithm.  This algorithm had been applied to experimental phase
contrast imaging with phantoms.  In addition the phase retrieval accuracies 
had been analyzed with computer simulations of phase contrast imaging of a 
digital phantom of breast tissue characteristics.  Results: We found that the 
TIE-based phase-retrieval suffers from an intrinsic singularity. The phantom
imaging showed that the TIE-based phase retrieval method is unstable 
against the noise and misalignment in phase contrast imaging, even if the 
Tikhonov regularization was employed. In contrast, our method based on
the phase–attenuation duality and attenuation partition is singularity-free, 
and is robust in terms of the phase-map image quality and phase-map
accuracies against the noise and misalignment, as is verified by means of
experimental phantom imaging and computer simulation. Conclusion: The 
conventional TIE-based phase retrieval method is unstable against noise and 
image misalignment.  Our phase retrieval method method based on the 
phase–attenuation duality and attenuation partition is robust against the
noise and image misalignment.
Research supported in part by DoD Breast Cancer Research Program.  

MO-E-204C-05
X-Ray Luminescence Computed Tomography Via Selective X-Ray 
Excitation
G Pratx*, C Carpenter, C Sun, L Xing, Stanford University School of
Medicine, Stanford, CA

Purpose: X-ray luminescence computed tomography (XLCT) is proposed 
as a new molecular imaging modality for imaging X-ray-excitable
phosphorescent nanoparticles three-dimensionally, in living subjects. Some
of these nano-sized particles can emit near-infrared (NIR) light when excited
with X rays and are particularly well suited for in-vivo biomedical imaging 
because the signals can propagate long distances in tissue. Method and 
Materials: The imaging mechanism used in XLCT consists in irradiating 
the subject using a sequence of programmed X-ray beams, while sensitive
photo-detectors measure the light coming out of the subject. By restricting 
the X-ray excitation to a single, narrow beam of radiation, the origin of the 
light photons can be inferred regardless of where these photons were
detected, and how many times they scattered in tissue. By including an X-
ray detector in the system, anatomical imaging is performed simultaneously
with molecular imaging via standard X-ray computed tomography. The 
molecular and anatomical images are spatially and temporally co-registered. 
Simulations of an XLCT system were performed using an analytical beam
model. A preliminary experiment was also conducted using a superficial 
treatment beam and an EM-CCD camera. Results: Tracer uptake in a 2 mm-
diameter target can be detected and quantified with sub-picomolar
sensitivity using less than 1 cGy of radiation dose, a result that makes XLCT 
potentially more sensitive than PET, currently one of the most sensitive 
molecular imaging modalities. Provided sufficient signal-to-noise ratio, the 
spatial resolution of the system can be made as small as needed by 
narrowing the beam aperture. In particular, 1 mm uniform spatial resolution
was achieved for a 1 mm-wide X-ray beam. Images reconstructed from
experimental XLCT measurements showed good agreement with the 
simulation model. 
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